IR, Raman, and X-Ray Photoelectron Spectroscopy Investigations of the Ordered Cubic Perovskite La₂LiVO₆

JIN-HO CHOY* AND SONG-HO BYEON

Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151, Republic of Korea

AND GERARD DEMAZEAU

Laboratoire de Chimie du Solide du CNRS, Université de Bordeaux I, 351, cours de la Libération, 33405 Talence Cedex, France

Received November 9, 1987; in revised form March 14, 1988

The ordered cubic perovskite La₂LiVO₆ has been prepared under 60 kbar oxygen pressure at 900°C. The double perovskite unit cell has a parameter of 7.746 \pm 0.003 Å. An ionic radius of pentavalent vanadium has been estimated for CN6. The assignment of the IR absorption and Raman scattering bands seems to confirm the cubic symmetry of the VO₆ octahedra in the lattice. According to the XPS study the binding energy of the V_{2p32} orbital electron in La₂LiVO₆ is estimated as 516.8 eV, which is quite consistent with that of V₂O₅. Some examples of vanadium oxides, where vanadium has an environment close to octahedral are also discussed. @ 1988 Academic Press, Inc.

Introduction

We have recently reported the preparation of a La_2LiVO_6 perovskite under 60 kbar oxygen pressure and also discussed the lattice contraction due to high effective charge of vanadium (V).

The stabilization of the 3d elements with oxidation state (V) in a perovskite lattice seems to be more difficult than that of the 4d and 5d elements. Therefore, the only La₂LiMO₆ oxides which have been prepared contain either vanadium (1) or iron (2). As 4d or 5d elements such as Nb, Mo, Ru, Ta, Re, Os, and Ir have lower ionization potentials, they are easier to stabilize in a perovskite lattice (3, 4).

Although some studies of IR absorption and Raman spectra of MO_6 groups (M = 4dor 5d element) have already been achieved for such materials, no investigation has been reported for the corresponding 3d transition metals.

In the present paper bonds of a chemical nature and site symmetry of the VO₆ octahedra in La₂LiVO₆ are discussed with vibrational and XPS spectra and compared to results of the X-ray diffraction study.

Experimental

The La₂LiVO₆ phase have been prepared in three steps. The first is a calcination at 700°C of a mixture of lanthanum and lithium nitrates (the last one with 30% excess) and vanadium oxide taken in stoichiometric

97

^{*} To whom correspondence should be addressed.

proportions with La_2O_3 . The second step is a thermal treatment at 750°C for 5 hr under O_2 stream. The last step is a 15-min heating at 900°C under oxygen pressure of 60 kbar. High pressure favors CN6 for vanadium (V), presence of oxygen being required for stabilizing this high oxidation in the temperature range necessary for the synthesis of perovskite-type phases. KClO3 was added to the reaction product of the second step for setting up the oxygen pressure. After temperature quenching the remaining KCl was quickly leached out with water. The color of the obtained phase is yelloworange. Samples were checked by X-ray powder diffraction analysis. IR absorption spectra were recorded on a JASCO DS-701G grating spectrometer by KBr method. Raman spectra were obtained on a Spectra Physics 700 Raman spectrometer using an argon laser. All of these measurements were performed at room temperature. Xray photoelectron spectra using an MgK α -X-radiation were recorded on an Perkin-Elmer electron spectrometer. The spectra were calibrated with C_{1s} (B.E. = 285.0 eV) peak.

Results and Discussion

The X-ray powder diffraction pattern of a La₂LiVO₆ leads to an indexation on the basis of a cubic perovskite unit cell (*Fm3m*, $a_0 = 3.873 \pm 0.002$ Å). But, due to the presence of a few weak superstructure lines resulting from a 1:1 three-dimensional ordering between Li and V, it can be indexed in a more correct way with a double unit cell using a lattice parameter of $a = 2a_0 = 7.746$ Å, which is in good agreement with the size and the charge difference of Li and V.

For the ABO_3 perovskites structure Poix (5) has established a relation between the A-O and B-O distances:

$$a = \frac{(A-O)^{XII} + (B-O)^{VI}}{1.207}.$$

On the basis of the values given in the corresponding tables $(d(\text{La}(\text{III})-\text{O})^{\text{XII}} = 2.71 \text{ Å}, d(\text{Li}(\text{I})-\text{O})^{\text{VI}} = 2.14 \text{ Å}, d(\text{V}(\text{V})-\text{O})^{\text{VI}} = 1.77 \text{ Å})$ and assuming $d(\text{B}-\text{O})^{\text{VI}} = \frac{1}{2}[d(\text{Li}(\text{I})-\text{O}) + d(\text{V}(\text{V})-\text{O})]$ the simple cubic cell constant can be calculated as $a_0 = 3.87 \text{ Å}$, a value close to that observed experimentally $(a_0 = 3.873 \text{ Å})$.

Group theoretical considerations for the MO_6 octahedron lead to 15 normal modes: $A_{1g} + E_g + 2T_{1u} + T_{2g} + T_{2u}$. From this representation we can deduce the following list of normal modes grouped according to the activities of the fundamental vibrations: infrared-active, $2T_{1u}$; Raman-active, A_{1g} , E_g , T_{2g} , and inactive, T_{2u} .

Each of the two T_{1u} modes involves a combination of bond stretching and angle deformation, the A_{1g} and E_g modes only bond stretching, and the T_{2g} and T_{2u} modes only angle deformations. As we have only one MO_6 octahedron per primitive unit cell, we may expect three bands in the Raman and two in the IR absorption spectra.

The IR and Raman spectra of La_2LiVO_4 are given in Fig. 1. As shown in IR spec-

FIG. 1. IR absorption and Raman spectra of La_2Li VO₆.

trum two strong absorption bands were observed as expected at about 590 and 415 cm^{-1} . The Raman spectrum contains only one band at about 730 cm^{-1} , the intensity of which is rather strong. Since the color of La₂LiVO₆ crystals is yellow-orange, the laser beam used was partly absorbed particularly below 500 cm^{-1} . Therefore the expected bands could not be observed in the region 200–500 cm^{-1} .

Assuming that the binding forces in the $V^{V}O_{6}$ octahedron are large compared to the other ones within the crystal, the frequencies of the vibrations of this group must be close to the frequencies of the free-ion modes, and the internal and external modes should be completely separated (6). An approach for the interpretation of the vibrational spectra of the perovskites of La₂Li MO_6 type was recently carried out by Hayashi et al. (7), but for the 4d and 5delements. For La₂LiVO₆, the IR absorption bands can be assigned as two T_{1u} vibrational modes (ν_3 and ν_4) and the strong Raman band as a A_{1g} vibrational mode $(\nu_1).$

The ν_1 , ν_3 , and ν_4 modes of the La₂LiMO₆ oxides (M = V, Nb, and Ta) are compared in Fig. 2. For the T_{1u} modes, there is almost no difference for ν_3 in the three cases, but a relatively large shift of ν_4 toward higher wave numbers is observed for La₂LiVO₆ with respect to La₂LiNbO₆ and La₂LiTaO₆. In the Raman spectrum, however, an appreciable dependence on the cation has not been detected. Similar phenomena have been observed for (Nb^VCl₆) and (Ta^VCl₆) as well as for (Ti^{IV}Cl₆), (Zr^{IV}Cl₆), and (Hf^{IV}Cl₆) (8).

For V^V, Nb^V, and Ta^V which have high effective nuclear charges (11.80, 13.25, and 15.35, respectively) and low-lying empty t_{2g} -d orbitals, strong π bonding may be expected. The increased frequency of the asymmetric ν_4 vibration may result from the enhancement of the π bonding between vanadium and oxygen compared to that of

FIG. 2. Comparison of the IR absorption $(2T_{1u})$ and Raman (A_{1g}) modes in La₂LiMO₆ $[M = V (3d^0)$, Nb $(4d^0)$, and Ta $(5d^0)$].

the Nb-O or Ta-O bonds because of the decrease of the *M*-O distances (V-O = 1.77 Å, Nb-O = 2.06 Å, and Ta-O = 2.05 Å).

As the formal ionic radius of V(V) (0.54 Å) is smaller than that of Nb(V) (0.64 Å) or Ta(V) (0.64 Å) (9), the magnitude of the Goldschmidt factor (t is defined by $R_A + R_O$ $= t \sqrt{2[(R_{\rm B} + R_{\rm B'})/2 + R_{\rm O}]}$, where R represents corresponding ionic radii in $A_2BB'O_6$ perovskite) of La₂LiVO₆ is 0.961, which is much larger than the value calculated for La_2LiNbO_6 or La_2LiTaO_6 (0.938) and therefore the size of vanadium (V) fits geometrically better than that of niobium (V) or tantalum (V) to set up the perovskite structure with regular MO₆ octahedra. A Jahn-Teller effect is indeed excluded for the V(V), Nb(V), or Ta(V) with d^0 electronic configurations.

The fact that the value of the band halfwidth (110 cm⁻¹) of the T_{1u} vibrational band (ν_3) is much smaller than those of NbO₆ or TaO₆ shows that there can be little lowering of the site symmetry (7). Nevertheless a small shoulder is observed in the IR bands of the VO₆ octahedral group. Thus it can be concluded that the structure of La₂LiVO₆ should be slightly different from that of La₂LiNbO₆ or La₂LiTaO₆, the lattice of which is, respectively, orthorhombic or monoclinic with a small deviation from the pure cubic symmetry.

FIG. 3. XPS spectrum of La₂LiVO₆.

Therefore in La_2LiVO_6 we may expect the VO₆ octahedra to be regular, i.e., of O_h symmetry in agreement with the X-ray data.

To confirm the oxidation state V of vanadium in La₂LiVO₆ XPS measurements have been performed as shown in Fig. 3. The binding energies of the V_{2p} orbital electrons are found at 523 eV for V_{2p12} and 516.8 eV for V_{2p32}. In Fig. 4 the binding energies

FIG. 4. Variation of the binding energy for the $V_{2p_{3/2}}$ orbital electrons in some vanadium oxides and vanadium metal with respect to their oxidation states. See Refs. for V (10–17), V₂O₃ (17), VO₂ (14, 16), and V₂O₅ (13, 16, 18). The binding energy data with the open circles are obtained in the present work.

 $(V_{2p_{30}})$ of various vanadium oxides and vanadium metals published in previous papers are plotted against the respective oxidation state of vanadium. It was found that the binding energy of $V_{2p_{3p}}$ for La₂LiVO₆, 516.8 eV, is close to those previously determined for V_2O_5 (516.6–517.3 eV). For all materials considered, a linear variation of the binding energy vs oxidation state of vanadium has been detected, except for V_2O_3 , where $2P_{3/2}$ electron binding energy was reported to be 512.8 eV. Therefore, we have attempted to check this value. Commercial V₂O₃ with a 99.999% purity was used for the XPS measurements. As shown in Fig. 5, the $V_{2p_{3/2}}$, $V_{2p_{1/2}}$, and O_{1s} electron binding energies have been detected at 515.0, 522.5, and 529.7 eV, using the same standard. The value obtained for La₂LiVO₆ confirms the linear variation shown in binding energy vs oxidation state for the same anionic surrounding (Fig. 4).

Table I allows us to compare the oxidation states of vanadium and the average V-O bond lengths of the various oxides as well as the binding data.

It is well known that in the oxides intermediate between V_2O_3 and VO_2 the coordination of vanadium is octahedral with strong distortions, but in the oxides between VO_2 and V_2O_5 the distortion of some octahedron is so keen that the coordination

FIG. 5. XPS spectrum of V₂O₃.

V-O Bond Length of Some Vanadates		
V ₂ O ₃	3	2.01
VO ₂	4	1.94
V_2O_5	5	1.83
La-LiVO.	5	1.77

is better described as trigonal bipyramidal (19). But the higher the oxidation state of vanadium is the shorter the V-O bond length becomes. If we compare, however, V_2O_5 and La_2LiVO_6 , we find that the V-O bond length in La_2LiVO_6 is shorter than the average value in V_2O_5 despite similar oxidation states. This observation confirms the fact that La_2LiVO_6 has a smaller unit cell than that expected from the variation of the parameter with ionic radius (1) and that the covalency of the V-O bonds in La_2LiVO_6 is higher than that observed for V_2O_5 due to bond competition in the perovskite oxide.

References

- G. DEMAZEAU, E. O. KIM, J. H. CHOY, AND P. HAGENMULLER, Mater. Res. Bull. 22, 735 (1987).
- G. DEMAZEAU, B. BUFFAT, F. MENIL, L. FOURNES, M. POUCHARD, J. M. DANCE, P. FABRITCHNYI, AND P. HAGENMULLER, *Mater. Res. Bull.* 16, 1465 (1981).
- K. HAYASHI, G. DEMAZEAU, AND M. POUCHARD, C. R. Acad. Sci. Paris, Ser. II 1292, 1433 (1981).
- 4. K. HAYASHI, G. DEMAZEAU, M. POUCHARD, AND

P. HAGENMULLER, Mater. Res. Bull. 15, 461 (1980).

- P. POIX, "Relation entre les distances anioncation et les paramètres cristallines" (J.P. Suchet, Ed.), Séminaire de Chimie de l'Etat Solide VI, Centre de Documentation Universitaire et SEDES, Paris (1966-1967).
- A. F. CORSMIT, H. E. HOEFDRAAD, AND G. BLASSE, J. Inorg. Nucl. Chem. 34, 3401 (1972).
- 7. K. HAYASHI, H. NOGUCHI, AND M. ISHII, Mater. Res. Bull. 21, 401 (1986).
- W. VAN BRONSWIJCK, R. J. H. CLOARK, AND L. MARESCA, *Inorg. Chem.* 8, 1395 (1969).
- 9. R. D. SHANNON, Acta Crystallogr. Sect. A 32, 751 (1976).
- L. RAMQVIST, K. HAMRIN, G. JOHANSSON, U. GELLUS, AND C. BORDLING, J. Phys. Chem. Solids 31, 2669 (1970).
- 11. M. ROMAND AND M. ROUBIN, Analusis 4, 309 (1976).
- 12. R. LARSSON, B. FOLKESSON, AND G. SCHON, Chem. Scr. 3, 88 (1973).
- V. I. NEFEDOV, YA. V. SALYN, A. A. CHERTKOV, AND L. N. PADURETS, *Zh. Neorg. Khim.* 19, 1443 (1974).
- 14. C. J. GROENENBOOM, G. SAWATSKY, H. J. DEL MEIJER, AND F. JELLINEK, J. Organometal. Chem. 76, C4 (1974).
- H. F. FRANZEN AND G. A. SAWATSKY, J. Solid State Chem. 15, 229 (1975).
- G. A. SAWATSKY AND E. ANTONIDES, J. Phys. Collog. 37, C4-117 (1974).
- J. M. HONIG, L. L. VAN ZANDT, R. D. BOARD, AND H. E. WEAVER, *Phys. Rev. B* 6, 1323 (1972).
- V. I. NEFEDOV, D. GATI, B. F. DZHURINSKII, N. P. SERGUSHIN, AND YA.V. SALYN, *Zh. Neorg. Khim.* 20, 2307 (1975).
- A. F. WELLS, "Structural Inorganic Chemistry," 5th ed., p. 565, Oxford Univ. Press, London/New York (1984).
- 20. W. R. ROBINSON, Acta Crystallogr. Sect. B 31, 1153 (1975).
- 21. J. M. LONGO AND P. KIERKEGAARD, Acta Chem. Scand. 24, 420 (1970).
- 22. K. A. WIHELMI, K. WALTERSSON, AND L. KIHLBORG, Acta Chem. Scand. 25, 2675 (1971).